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In this paper, an exact closed form solution is introduced for the heat conduction equation in
cylindrical coordinates under consecutive inner time dependent surface heat flux by both the
Fourier and dual-phase-lag (DPL) models. The solution is used to calculate the temperature
distribution in a gun barrel subjected to single and consecutive shoots, and the results are
compared with literature. The parametrical study is done using the analytical solution to
show the effect of shooting frequency which leads to different heat power from each fire
shoot and temperature distribution. The result shows good ability of analytical solution
for estimation of temperature distribution in the gun barrel, especially under consecutive
shoots in which unexpected incidents such as barrel melting is so probable. The closed form
solution can be applied for verification of other numerical works in this area.
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1. Introduction

According to literature, the classical Fourier theory can estimate an acceptable thermal distribu-
tion in most engineering materials but the thermal propagation velocity in this model is infinite,
thus in some applications such as great heat flux on a surface or small time of interaction this
model must be improved. Determination of temperature distribution in a gun barrel that is
exposed to great heat flux in a short period is one of the mentioned phenomena. At first, the
non-Fourier heat flux equation as a modified model was presented by Cattaneo (1958), Vernotte
(1961) (C-V relation) as a single phase model, and Tzou (1995, 1997) proposed a new concept of
dual-phase-lag (DPL) model in which the heat flux and temperature gradient could be simulated
with lag times. This model is appropriate for thermal analysis of metals (Tzou, 1995, 1997) and
is used to analysis heat transfer in some relative applications (Afrin et al., 2014; Ghazanfarian
and Abbassi, 2009, 2012; Ghazanfarian and Shomali, 2012; Han et al., 2006; Liu and Chen,
2010).
Considering a finite speed for thermal propagation and phonon-electron interactions in me-

tals, the dual-phase-lag heat conduction model is

q + τq
∂q
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(
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∂

∂t
∇T

)

(1.1)

where T is temperature, q is heat flux, k is thermal conductivity, τq shows the time lag of
heat flux and τT is the time lag of the temperature gradient with constant magnitudes about
picosecond and a common specific ratio of τT /τq = 100 for metals (Chandrasekharaiah, 1998).
The dual-phase-lag heat conduction equation is obtained using the above constitutive relation

and energy equation as
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where α = k/(ρC) is thermal diffusivity, ρ is density and C is specific heat of the material. This
equation transforms to the C-V Non-Fourier heat conduction model when τT = 0 and reduces
to the classical Fourier heat conduction if τT = τq = 0.

Some engineering problems in cylindrical coordinates are solved by a non-Fourier model.
Torabi and Saedodin (2011) studied the temperature distribution in cylindrical coordinates
numerically and analytically and reported that for some cases in hyperbolic heat conduction,
up to 40% error occurred in the numerical method. Mishra and Sahai (2012) implemented the
lattice Boltzmann method for analysis of hyperbolic heat conduction in spherical and cylindrical
coordinates.

Gheitaghy and Talaee (2013) solved the hyperbolic and parabolic heat conduction by an
electrical simulation method. Talaee et al. (2014) presented an exact analytical solution for non-
-Fourier thermal stress in a cylindrical shell considering C-V relation under a periodic boundary
condition. Saedodin and Barforoush (2017) solved the hyperbolic heat conduction equation in a
typical cylinder under special heat flux and found that an increase of the Vernotte number led
to delay in sense of thermal wave in a specific point.

Also the DPL method is used for analysis of thermal phenomena by some researchers. Ak-
barzadeh and Chen (2012) investigated the transient heat conduction in a functionally graded
cylindrical panel based on DPL theory and reported the ability of this model for analysis of pa-
rabolic and hyperbolic heat conduction. In addition, they found that an increase of the phase lag
led to a decrease of the speed of thermal wave along with growth in amplitude of the transient
temperature. Torabi and Zhang (2014) investigated the temperature distribution of a cylindri-
cal geometry subjected to two types of continuously and exponential pulsed heat flux boundary
conditions by semi-analytical and numerical methods.

The inner surface of gun barrel is exposed to high heat load due to hot species of combustion
products that must be calculated in design of an automatic gun. This phenomenon will be more
critical and can threaten the shooter by self-ignition or melting due to temperature rise in the
automatic gun in the continuous fire mode. In addition, change in the gun caliber due to high
temperature can reduce the shooting accuracy. Therefore, for proper thermal design of the gun
barrel, some research studies are done to determine the temperature of the barrel at different
conditions.

The classical Fourier law is used as a practical tool to analyze most heat transfer phenomena
such as thermal analysis of gun barrels. Chen et al. (2007) presented an inverse method for esti-
mation of heat flux in a multi-layer gun barrel at continuous firing conditions which showed that
the bore surface material can be melted due to heat flux of shoots. Wu et al. (2008) studied the
heat transfer in a 155mm mid wall cooled compound gun barrel theoretically and numerically
and demonstrated ineffectiveness of natural air cooling and effectiveness of forced mid wall cool-
ing for decreasing temperature of the barrel. Chen and Liu (2008) estimated two-dimensional
heat flux in a gun barrel by using finite element schemes and an inverse estimation method,
and showed the ability of that method for estimation of time varying heat flux and temperature
distribution in the gun chamber. Lee et al. (2009) estimated the time varying heat flux and ther-
mal stresses in a machine gun by an inverse algorithm based on the conjugated gradient method.
Mishra et al. (2010) computed the heat transfer to the gun barrel for nine shots by the finite
element method and validated the model with experimental measurements. In addition, they
found that exponentially decaying heat flux was an accurate model for temperature variation of
the gun barrel. Hill and Conner (2012) presented a numerical model of transient heat transfer
in machine gun barrels which defined the temperature profile through thickness of the barrel by
the finite difference method.

The obtaining an exact temperature distribution is of importance due to the need of exact
thermal design of the gun barrel. It can be seen from the literature that there is not any
exact analytical model introduced for thermal analysis of the gun barrel. Here, an exact closed
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form solution is introduced for the heat conduction equation in cylindrical coordinates under
consecutive inner time dependent surface heat flux by both the Fourier and DPL models. The
comparison of estimation is done for the solution, and parametrical study is done to show the
ability of finding a solution for the best gun thermal design. The conditions of self-ignition and
melting relative to the shooting frequency and the number of shoots can be determined exactly
by this model. The closed form solution can be applied for verification of other numerical works
in this area.

2. Mathematical model

The gun barrel model as an infinite hollow cylinder is shown in Fig. 1 with inner and outer
radius of ri and ro.

Fig. 1. Schematic of hollow cylindrical model

The one-dimensional DPL thermal wave model in cylindrical coordinate is considered as
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The inner boundary condition of the barrel is considered as subject to an exponentially
decaying heat flux as q(ri, t) = q0f(t) for each shoot, where f(t) is defined as f(t) = exp(−t/t0)
(Mishra et al., 2010) as shown in Fig. 2 in which t0 is a constant that depends on pressure and
muzzle velocity and projectile mass (Lawton, 2001). The two time-dependent function of the
produced heat flux for Gun (2) (Seiler et al., 2003) and Gun (3) (Dębski et al., 2016) is shown
in Fig. 2.
Thus, the time dependent boundary condition on the inner surface is

τT
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+
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)
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This boundary condition can be seen as a first order ordinary differential equation related
to time, which can be solved to get
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The outer surface of the gun barrel is considered to be exposed to air, therefore, undergoes
convection heat transfer, which can be defined as

∂T

∂r

∣

∣

∣

∣

∣

r=ro

= h(T − T∞) (2.4)
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Fig. 2. The time-dependent function of heat flux applied to the inner surface of the gun barrel, f(t)

The initial conditions of this problem are

T (r, 0) = T∞
∂T

∂t

∣

∣

∣

∣

∣

t=0

= 0 (2.5)

3. Analytical solution procedure

The method of separation of variables can not be applied at first due to the time-dependent
boundary condition of the inner surface. Therefore, this kind of problem should be solved with
a time-independent boundary condition, and then its time dependency should be applied to the
solution by using Duhamel’s integral. Thus the pure analytical solution procedure according
to the superposition principle consists of four steps (Talaee et al., 2014, 2016, 2018; Atefi and
Talaee, 2011; Talaee and Sarafrazi, 2017; Talaee and Atefi, 2011; Talaee and Kabiri, 2017a,b):

• The steady equation with a non-homogeneous time-independent boundary condition [θ0(r)]

• The transient equation with homogeneous and time-independent boundary conditions and
the reformed initial condition [θ1(r, t)]

• Summing the steady and transient solutions as a solution to the problem with time-
-independent boundary conditions

• Applying the time function of the boundary condition to the final solution using Duhamel’s
integral.

The above steps are explained in the following. According to the compliance of the results
and the solution procedure, the variable θ = T − T∞ is used afterwards.

3.1. Steady-state problem

The steady equation with the non-homogeneous boundary condition is

d2θ0
dr2
+
1

r

dθ0
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= 0 (3.1)
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Solution to the steady problem can be simply obtained as

θ0(r) =
q0ri
k

t0 − τq
t0 − τT

( k

hro
+ ln
ro
r

)

(3.3)

3.2. Transient problem

The transient DPL heat conduction equation with homogeneous boundary conditions and
the reformed initial condition is shown in Eqs. (3.4) to (3.6), respectively
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∂θ1
∂t

∣

∣

∣

∣

∣

t=0

= 0 (3.6)

The solution yields by separating the variables (θ1(r, t) = R(r)T (t)) in Eqs. (3.4) to (3.6) as

θ1(r, t) =
∞
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where
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and J0, Y0 are the Bessel functions of the first and second kind, respectively, and λ = λm is
the root of the following transcendental equation that is obtained by application of boundary
conditions
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Applying the initial conditions in Eq. (3.6), two equations are defined for coefficients Am and
Bm as
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3.3. Superposition of the temperature field

According to the superposition principle, solution of the problem with a time-independent
boundary condition is defined as

θ(r, t) = θ0(r) + θ1(r, t) =
q0ri
k

t0 − τq
t0 − τT

( k

hro
+ ln
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r

)

+
∞
∑

m=1
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where

G(t) = er1t −
r1
r2
er2t

3.4. Application of Duhamel’s integral

In this step, the complete solution is defined by applying the function F (t) on the solution
of the problem with the time-independent boundary condition θ(r, t). The Duhamel relation can
be written as (Talaee and Atefi, 2011)

θ(r, t) = F (0)θ(r, t) +

t
∫

0

θ(r, t− τ)
∂F (τ)
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dτ (3.13)

Here F (t) = e−t/t0−e−t/τT is the time-dependent part of the boundary condition, and F (0) = 0.
Thus, the complete solution can be determined as
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Doing time integration of the above solution, the final closed form solution of the temperature
distribution in the gun barrel due to a single shoot is reduced to

θ(r, t) = θ0(r)
(
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For consecutive shooting, f(t) can be a series of single shoots as introduced (Talaee et al.,
2018) in Eq. (3.16)

f(t) =
s
∑

n=1

e
−
t−(n−1)u
t0 (3.16)

where u is the time interval between the consecutive shoots and s is the number of shoots which
is determined as the Bracket function of [(t/u) + 1].
Finally, this solution for the consecutive shoots is given as
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The solution of the problem for one shoot in the Fourier model, doing the above procedure,
is

θ(r, t) = θ0(r)e
−
t

t0 +
∞
∑

m=1

CmΦm

(

e−αλ
2
mt +
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And the solution for the consecutive shoots in the Fourier (parabolic equation) model is

θ(r, t) = θ0(r)
s
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4. Results and discussion

In order to demonstrate the accuracy of the introduced model, the temperature variation during a
single shoot is analyzed by both the Fourier and DPL models and compared with experimental
data as shown in Fig. 3. The simulation properties are adopted for Gun (1) as discussed in
literature in Table 1. As shown in Fig. 4, the dimensionless temperature of both approaches for
one shoot have good agreement with the experiment (Lawton, 2001).

Fig. 3. Dimensionless temperature of the inner surface for a single shoot for Gun (1)

At the next step, the ability of the solution is shown by a comparison with the experiment
(Seiler et al., 2003) in the state of consecutive multi shoots for Gun (2) as shown in Fig. 4. The
temperature profile is plotted applying real parameters of the guns as shown in Table 1.

The ability of the solution for estimation of temperature distribution is shown in Fig. 4
compared with experimental data.

The temperature distribution in the radial direction of the barrel is shown in Fig. 5. It can
be seen that the DPL model has a better estimation than the Fourier one.
The time interval between consecutive shoots or frequency of shooting has an important role

in the magnitude of temperature in the barrel. Here, two different time intervals of 0.3 s and
0.15 s are adopted for parametrical analysis of temperature profiles using the DPL model. In
the other words, the temperature variation at the inner and outer surfaces of the gun barrel are
calculated in a specific time for different shooting rates of 200 rpm and 400 rpm.
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Table 1. Applied parameters for solving the problem

Parameters
Magnitude

DimensionGun (1) (Lawton, Gun (2) (Seiler Gun (3) (Dębski
2001) et al., 2003) et al., 2016)

α 1.11 · 10−5 1 · 10−5 0.69 · 10−5 m2/s

k 40 36 30 w/mk

τT 59 59 59 ps

τq 0.59 0.59 0.59 ps

t0 4.74 2.3 7.48 ms

q0 192.7 272.2 262.3 Mw/m2

h∞ 30 30 30 w/(m2k)

T∞ 27 27 27 ◦C

2ri 155 20 35 mm

Nominal shooting rate – 300 550 rounds/min

Permeated feed box – 20 – –

Fig. 4. Temperature of the specified point of the barrel in 150µm from the inner surface for Gun (2) in
the consecutive shooting mode

Fig. 5. Temperature profile at the given time t = 1205.5ms at the 15-th shoot
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The time-history temperature variation of the barrel is analyzed for Gun (2) and (3), and
the results are shown below for two types of guns in literature as described in Table 1. The
temperature history of the inner and outer surface of the gun barrel in two shooting rates of
200 rpm and 400 rpm (round per minute) is depicted in Fig. 6, and the temperature profile in
barrel thickness is shown in Fig. 7.

Fig. 6. Temperature variation of the inner and outer surfaces of Gun (2) for consecutive shoots

Fig. 7. Temperature distribution in barrel thickness of Gun (2) in 400 rpm

As shown in Fig. 7, the rate of temperature rise increases due to the increase of the shooting
rate in Gun (2). For example, after about 8 s or 50 consecutive shoots, the temperature of the
inner surface crosses 1560◦C, at the rate of 400 rpm, for which the outer surface temperature is
about 500◦C. Since the melting point of steel is about 1700◦C, it can be said that the shooting
can be continued with the rate of 400 rpm up to 50 shoots. It can be seen in Fig. 7 that the
shooting rate or feed box can be increased from the nominal rate of 300 rpm or 20 for this type
of gun, respectively.

The temperature behavior is calculated for bigger Gun (3) with higher caliber, as given in
Table 1. The results are shown in Figs. 8 and 9.

This gun has a higher caliber and then higher produced heat load on the inner surface com-
pared with Gun (2). Usually, the barrel of large caliber guns can be coated by a hot working
material with high melting temperature such as Tantalum (Underwood et al., 2007) which has
about 3000◦C melting temperature (Malter and Langmuir, 1939). As shown in Fig. 8, the tem-



694 M.R. Talaee, S.A. Hosseinli

Fig. 8. Temperature variation of the inner and outer surfaces of Gun (3) for consecutive shoots

Fig. 9. Temperature distribution in barrel thickness of Gun (3) for 400 rpm

perature of the inner and outer surfaces is increased due to an increase in the shooting rate,
and after about 3 s (21 consecutive shoots) the inner surface temperature reaches 3000◦C at
the rate of 400 rpm, in which the outer surface temperature is about 350◦C. But at the rate
of 200 rpm, the inner surface temperature reaches about 2500◦C after about 6 s (21 consecutive
shoots). Therefore, considering the temperature profile in Fig. 9, it can be said that if this gun is
used in the state of 400 rpm, some phenomena such as barrel melting and corrosion, decrease of
shooting accuracy and self-ignition are probable. It can be said that under consecutive shoots,
the thermal conditions are more critical for guns with larger calibers, and unexpected incidents
such as barrel melting are so probable. Finally, the ability of the introduced analytical solution
for estimation of the temperature profile in the gun barrel is stated as shown above.

5. Conclusion

The one-dimensional dual-phase-lag heat conduction in a gun barrel is determined by an ana-
lytical solution. The pure analytical solution was found based on the method of separation of
variables and Duhamel’s integral. The effect of different shooting rates in consecutive shooting
and different gun calibers on the magnitude and distribution of temperature has been studied
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in this work. The results show that the decreasing time interval leads to higher temperatures in
the gun barrel which may lead to barrel melting and threatens the safety of the shooter. The
obtained results can be used for analysis and production of safe gun barrels to prevent from
melting, self-ignition and decreasing the shooting accuracy.
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